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Abstract.

As with other western boundary currents globally, the East Australian Current (EAC) is inherently dynamic making it a

challenge to model and predict. For the EAC region, we combine a high-resolution state-of-the-art numerical ocean model

with a variety of traditional and newly available observations using an advanced variational data assimilation scheme. The

numerical model is configured using the Regional Ocean Modelling System (ROMS 3.4) and takes boundary forcing from the5

BlueLink ReANalysis (BRAN3). For the data assimilation we use an Incremental Strong-Constraint 4-Dimensional Variational

(IS4D-Var) scheme. This paper describes the data assimilative model configuration that achieves an optimised minimisation

of the difference between the modelled solution and the observations to give a dynamically-consistent ‘best-estimate’ of the

ocean state over a 2-year period. The reanalysis is shown to represent both assimilated and non-assimilated observations well. It

achieves mean spatially-averaged RMS residuals with the observations of 7cm for SSH and 0.4◦ C for SST over the assimilation10

period. The time-mean RMS residual for subsurface temperature measured by Argo floats is a maximum of 1◦ C between water

depths of 100-300m and smaller throughout the rest of the water column. Velocities at several offshore and continental shelf

moorings are well represented in the reanalysis with complex correlations between 0.8-1 for all observations in the upper

500m. Surface radial velocities from a high-frequency radar array are assimilated and the reanalysis provides surface velocity

estimates with complex correlations with observed velocities of 0.8-1 across the radar footprint. Comparison with independent15

(non-assimilated) shipboard CTD cast observations shows a marked improvement in the representation of the subsurface ocean

in the reanalysis, with the RMS residual in potential density reduced to about half of the residual with the free-running model

in the upper eddy-influenced part of the water column. This shows that information is successfully propagated from observed

variables to unobserved regions as the assimilation system uses the model dynamics to determine covariance, such that the

ocean state better fits and is in balance with the observations. This is the first study to generate a reanalysis of the region at20

such a high resolution, making use of an unprecedented observational data set and using an assimilation method that uses the

time-evolving model physics to adjust the model in a dynamically consistent way. As such, the reanalysis potentially represents
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a marked improvement in our ability to capture important circulation dynamics in the EAC. The reanalysis is being used to

study EAC dynamics, observation impact in state-estimation and as forcing for a variety of downscaling studies.

1 Introduction

The East Australian Current (EAC) is the Western Boundary Current (WBC) of the South Pacific subtropical gyre, flowing

poleward along the east coast of Australia. The EAC has the weakest mean flow of the WBCs associated with the subtropical5

gyres (Mata et al., 2000) but its flow is characterised by high eddy variability (Mata et al., 2006) comparable with stronger

WBCs such as the Gulf Stream, the Kuroshio and the Agulhas Current (e.g. Gordon et al. (1983); Feron (1995)). The EAC

forms in the South Coral Sea (15-24◦ S) and intensifies as it flows along the coast of southeast Queensland and northern

New South Wales (NSW) (22-35◦ S) – refer to Figure 1 for geographical location. The current strengthens dramatically as

the continental shelf narrows to 15 km at its narrowest point (31◦ S) and typically separates from the coast between 31-33◦ S10

(Cetina Heredia et al., 2014). Turning eastward to form the Tasman Front, the current sheds large warm- and cold-core eddies

in the Tasman Sea every 90-110 days (Oke and Middleton, 2000; Cetina Heredia et al., 2014). The high eddy variability makes

the EAC a challenging system to observe and predict.

In general, the kinetic energy of the ocean is dominated by mesoscale eddies that fluctuate on time scales of days to months

and on spatial scales of tens to 100s of kilometers and exceeds the mean flow by an order of magnitude or more (Stammer, 1997;15

Ferrari and Wunsch, 2009). Eddies are typically generated due to barotropic or baroclinic instabilities which are unpredictable

so effective state-estimation and prediction of the mesoscale circulation requires data assimilation techniques that combine

ocean observations with a dynamical model. Much of the effort towards data assimilative modelling of the EAC region has

been as part of the development Australia’s Bluelink ocean data assimilation system (BODAS) (Oke et al., 2005, 2008, 2013)

which uses an Ensemble Optimal Interpolation (EnOI) based scheme. The BODAS has been a useful and relatively efficient20

method to provide ocean state estimates of the Australian region. EnOI uses long-run statistics to generate the covariance of

model points and assimilates observations at a single time to generate adjusted initial conditions for each assimilation window.

In this work we use 4-dimensional variational data assimilation (4D-Var), which adjusts the model initial conditions, bound-

ary and surface forcings such that the difference between the model solution of the time-evolving flow and all available obser-

vations is minimised over an assimilation interval. A major advantage of the 4D-Var scheme is that it uses the linearised model25

equations and their adjoint to compute covariances, so the model is adjusted in a dynamically consistent way to minimise the

difference between the observations and the modelled time-evolving ocean state. Using the linearised equations allows dynam-

ical connections between state variables to propagate information from observed variables to unobserved, dynamically-linked

variables without requiring ensemble or long-run statistics. The state estimate is a solution of the model equations, and the

minimistaion process can be used to understand the sensitivity of the ocean circulation (e.g. Moore et al. (2009); Powell et al.30

(2012)). Zavala-Garay et al. (2012) used 4D-Var with ROMS to assimilate Sea Surface Height (SSH), Sea Surface Temper-

ature (SST) and Expendable Bathythermograph (XBT) observations into a coarse resolution (18-30km) model of the EAC
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region, and use an empirical relationship between surface and subsurface properties to help propagate the dominant surface

observations to the subsurface and improve their subsurface estimates.

Combining a state-of-the-art numerical ocean model with a variety of traditional and newly available observations, we

generate a high resolution ocean state estimate of the EAC region over a 2-year period (Jan 2012 - Dec 2013). This paper

describes the development and evaluation of the data assimilative model configuration. We begin by configuring a numerical5

model of the EAC region that is capable of representing the mean ocean circulation and its eddy variability. The model is

configured to resolve the continental shelf which is 15km wide at its narrowest point and may be important in accelerating the

EAC and driving the current’s separation (Oke and Middleton, 2000). In order to correctly represent the spatial and temporal

evolution of the eddy field, we need to constrain the model with observations. We configure a 4D-Var data assimilation system

that reduces the difference between the model solution and observations, given prior assumptions of the uncertainties in the10

observations and the model background state. In addition to the traditional data streams (satellite derived SSH and SST, Argo

profiling floats and XBT lines) we exploit newly available observations that were collected as part of Australia’s Integrated

Marine Observing System (IMOS, www.imos.org.au). These include velocity and hydrographic observations from a deep-

water mooring array and several moorings on the continental shelf, High-Frequency radar observations, and ocean gliders.

We show that the assimilation configuration developed in this work results in near-optimal minimisation of the differences15

between the modelled solution and the observations. As such, the reanalysis provides us with a ‘best estimate’ of the ocean

state that is dynamically consistent within each assimilation time window. The reanalysis is being used to study the variability

and separation dynamics of the EAC. Furthermore, the 4D-Var method allows us to use the reanalysis to quantify the impact

of particular data streams on circulation estimates, which has the potential to provide important information for assessing and

improving the observing system design. The product is also being used as boundary forcing for a variety of downscaling studies20

in coastal southeastern Australia. This data assimilative model represents a significant improvement on previous modelling

work in the EAC for these purposes e.g. Roughan et al. (2003) which was based on climatology, Macdonald et al. (2013, 2014)

which focused on process studies of warm core and cold core eddies, and Zavala-Garay et al. (2012) which used 4D-Var with

a much coarser resolution.

The reanalysis development and evaluation is presented as follows. In Section 2, we describe the numerical model configu-25

ration, including validation of a 10-year free-running simulation to provide confidence that the model is correctly representing

the region’s circulation dynamics. In Section 3, we describe the development of the reanalysis, including the data assimilation

scheme used, the assimilation configuration and the observations. The reanalysis performance is evaluated in Section 4 using a

variety of metrics to illustrate the system’s skill. A summary and conclusions are presented in Section 5.

2 Numerical Model30

2.1 Model Configuration

We use the Regional Ocean Modeling System (ROMS, version 3.4) to simulate the eddying general circulation in the south-

eastern Australia oceanic region. ROMS is a free-surface, hydrostatic, primitive equation ocean model solved on a curvilinear
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grid with a terrain-following vertical coordinate system (Shchepetkin and McWilliams, 2005). For computational efficiency,

ROMS uses a split-explicit time-stepping scheme allowing the barotropic solution to be computed at a much smaller time step

than is used for the (slow-mode) baroclinic equations using a temporal averaging filter to ensure preservation of tracers and

momentum and minimise aliasing of unresolved barotropic signals into the baroclinic motions (Shchepetkin and McWilliams,

2005). The ROMS computational kernel is further described in Shchepetkin and McWilliams (1998, 2003).5

Sub-grid scale horizontal mixing of momentum and tracers uses a harmonic (3-point stencil) mixing operator (Haidvogel and

Beckmann, 1999), and the viscosity is derived from the horizontal divergence of the deviatory stress tensor (Wajsowicz, 1993).

The diffusion and viscosity coefficients are scaled by grid-size such that less explicit diffusion occurs in the high-resolution

region than in the lower resolution region. The Mellor and Yamada (1982) level-2.5, second-moment turbulence closure scheme

(MY2.5) is used in parameterising vertical turbulent mixing of momentum and tracers.10

The model domain (shown in Figure 1) extends from Fraser Island in the north (25.25◦ S) to below the NSW/Victoria

border in the south (41.55◦ S) and nearly 1000 km offshore. The northern boundary is chosen at a latitude where the EAC

remains fairly coherent and is upstream of the region of elevated eddy variability (refer to Figure 2a). The grid is rotated

20◦ clockwise such that it is orientated predominantly along-shore in the y-dimension and cross-shore in the x-dimension.

The model has a variable horizontal resolution in the cross-shore direction, with 2.5 km (1/44◦) over the continental shelf15

and slope that gradually increases to 6 km (1/18◦) in the open ocean. The horizontal resolution is 5 km (1/22◦) in the along-

shore direction. The model is configured with 30 vertical s-layers distributed with a higher resolution in the upper 500m to

resolve the wind driven mesoscale circulation and near the bottom for improved resolution of the bottom boundary layer. The

vertical stretching scheme of Souza et al. (2014) is used, which ensures a constant-depth surface layer to better represent

satellite-derived SST, better resolve the ocean surface currents, and reduce the representation error of radio-measured surface20

currents. The bathymetry for the model was obtained from the 50m Multibeam Dataset for Australia from Geoscience Australia

(Whiteway, 2009).

In models using terrain-following coordinate systems, steep topographic gradients generate numerical errors associated with

the computation of the pressure gradient term resulting in artificial along-slope flows (Haney, 1991; Mellor et al., 1994). These

errors depend on the topographic steepness and the intensity of the stratification (Haidvogel et al., 2000). The variable cross-25

shore resolution improves the bathymetric resolution over the continental shelf and minimises pressure gradient errors over the

steep topography of the continental slope, while reducing computational expense by allowing coarser resolution in the deep

ocean. ROMS is effective at minimising these horizontal pressure gradient (HPG) errors (Shchepetkin and McWilliams, 2003);

although, a certain degree of topographic smoothing is usually still desirable. For this study, a smoothing method has been

applied in which a high priority is placed on maintaining the width of the continental shelf and preserving the seamounts that30

potentially play a role in steering of the EAC, while minimising HPG errors to an acceptable level. Accurate representation of

the continental shelf was considered paramount as the shelf is thought to have an important influence on the EAC (e.g. Oke

and Middleton (2000)).

The model uses initial conditions and boundary forcing from the BlueLink ReANalysis version 3p5 (BRAN3) (Oke et al.,

2013). BRAN is a multi-year integration of the Ocean Forecasting Australian Model (OFAM) and the Bluelink Ocean Data35
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Assimilation System (BODAS; Oke et al. (2008)). The boundary forcing is applied daily. The Chapman condition (Chapman,

1985) is applied to the free surface and the Flather condition (Flather, 1976) is applied to the barotropic velocity so that

barotropic energy is effectively transmitted out of the domain. For the free-running model, the baroclinic southern boundary

conditions are clamped to the BRAN3 boundary conditions to ensure accurate representation of the outflow to the south of the

domain. Radiation conditions are applied to the east and west boundaries. For the assimilation, all three ocean boundaries are5

clamped in the baroclinic. Baroclinic energy that does not match the BRAN3 condition is absorbed at the boundaries using a

flow relaxation scheme involving a sponge layer over which viscosity and diffusivity are increased linearly by a factor of 10

from the values applied within the model domain for the northern and eastern boundaries, and a factor of 20 for the southern

boundary. The size of the sponge layer is 12 grid cells (approximately 60km). Because the BRAN3 system is run with different

atmospheric forcing than we use, a correction was applied to the surface heat flux forcing such that the SST from BRAN3 is in10

balance with the atmospheric surface forcing for each month.

We begin by configuring a 10-year free-running simulation (hereafter referred to as the ‘10yr free run’) to ensure that the

model is capable of representing the mean ocean circulation and its variability. The 10yr free run is also used to provide

estimates of background variability to compute background error covariances for the assimilation scheme, and the 10-year

mean Sea Surface Height (SSH) field is used for addition of Sea Level Anomaly (SLA) observations for assimilation into the15

model. For the 10yr free run we use atmospheric forcing from the National Center for Environmental Prediction’s (NCEP)

reanalysis atmospheric model (Kistler et al., 2001). The atmospheric forcing fields are specified every 6 hours and used to

compute the surface wind stress and surface net heat and freshwater fluxes using the bulk flux parameterisation of Fairall et al.

(1996). A higher resolution atmospheric product was available for the 2-year reanalysis period. Atmospheric forcing for the

2-year model used to develop the reanalysis is provided by the 12km resolution Bureau of Meteorology (BOM) Australian20

Community Climate and Earth-System Simulation (ACCESS) analysis (Puri et al., 2013) and the forcing fields are specified

every 6 hours.

2.2 Consistency of Free-running Model

The 10yr free run is performed from 2002–2011 as this is the most recent period over which BRAN3 data were available at the

time of model development for use as initial and boundary forcing (BRAN3 more recently became available for the reanalysis25

period, 2012-2013). Comparison of the 10yr free run with observations provides validation of the ability of the model to

represent the ocean dynamics in the region. The model reproduces well the spatial patterns of time-mean and variability of

the mesoscale SSH; however, it is not expected to be in phase with the observations (e.g., the time and location of mesoscale

eddies do not match). Figure 2 shows that the mesoscale SSH variability is well represented in the model compared to satellite-

derived SSH data from AVISO over the 10-year period. This region of elevated SSH variability is consistent with the regions30

of enhanced eddy amplitude and rotational speed shown in Everett et al. (2012).

Mean cross-shore sections of alongshore velocity and temperature for the 10-year modelled period reveal a southward

flowing EAC and the associated downward tilt of the thermocline (Figure 3). The sections shown cross the coast at the EAC

Transport array, where the EAC is found to be most coherent (27.5◦ S), Coffs Harbour, just upstream of the typical EAC

5

Geosci. Model Dev. Discuss., doi:10.5194/gmd-2016-44, 2016
Manuscript under review for journal Geosci. Model Dev.
Published: 3 March 2016
c© Author(s) 2016. CC-BY 3.0 License.



separation zone (30.3◦ S) and Sydney, downstream of the EAC separation zone (33.9◦ S). The mean temperature sections

compare well with the corresponding mean temperature sections from the CSIRO Atlas of Regional Seas (CARS) climatology

(Ridgway et al., 2002).

Alongshore transport through the same three cross-shore sections for the full water column is computed daily and the mean,

standard deviation, minimum and maximum transports are shown in Table 1. Mean transport at Coffs Harbour is greater than5

upstream at 27.5◦ S due to recirculation, as described by (Ridgeway and Hill, 2009). The EAC typically separates from the

coast south of Coffs Harbour and mean transport through the Sydney cross section is approximately one third of the transport at

Coffs Harbour. This is consistent with Ridgway and Godfrey (1997), who estimate that about a third of the current’s transport

continues southward of the separation zone. Mata et al. (2000) compute transport from a mooring array located at 30◦ S, from

the coast out the 154.4◦ E (a similar section to our Coffs Harbour section) between September 1991 and March 1994. They find10

a mean total transport of 22.1 Sv southward with an Root Mean Squared (RMS) variability of 30 Sv. This compares well with

the transport through the Coffs Harbour section from the 10yr free run, which has a mean of 21.9 Sv poleward and a standard

deviation of 31.7 Sv.

The model configuration is capable of producing the mean dynamical features of the EAC and representing the SSH vari-

ability. We aim to constrain the model with two years of observational data to examine the evolution of the EAC during this15

period.

3 Reanalysis Development

3.1 Configuration

The reanalysis is configured for the 2-year period of 2012–2013 because of the availability of significant observational re-

sources during this time; in particular, an ADCP and mooring array deployed to capture the transport of the EAC (as detailed20

in the next section). The reanalysis model uses atmospheric forcing provided by the 12km resolution BOM ACCESS anal-

ysis, which was not available to over the 10yr free run testing period described above. To ensure that the higher-resolution

atmospheric forcing did not significantly alter the previous model comparison, we integrated the model for two years without

assimilation (hereafter referred to as the ‘2yr free run’) and compared the model-derived sea surface temperatures (SST) with

those from the advanced very-high resolution radiometer (AVHRR) satellite data. The model and SST observations exhibit no25

net bias over the 2yr free run period (not shown). In addition, the vertical stratification of temperature and salinity of the 2yr

free run well matches observations from Argo over that period (Figure 4).

3.2 Data Assimilation Scheme

The generate the full reanalysis, we must combine this model with the observations in a way that uses the model physics

to constrain the increments in initial conditions, boundary and surface forcing to generate a state estimate that better fits the30

observations. In this regard, we are looking for the model to represent the observations, not replicate the observations. If the
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model is capable of representing all of the observations in time and space using the physics of the model, then we should

have the most complete description of the ocean-state available. To accomplish this, we use incremental strong-constraint

four-dimensional variational assimilation (IS4D-Var).

IS4D-Var is an advanced state estimation technique used to reduce the residuals between model output and observations in a

way that is constrained by the dynamics of the flow. IS4D-Var uses variational calculus techniques to solve for the increments5

in model initial conditions, boundary conditions and forcing such that the difference between the modelled solution and all

available observations is minimised – in a least-squares sense – over the assimilation window. The forward integration of the

nonlinear model equations, given a prior estimate of the initial conditions, boundary and surface forcings, provides an estimate

of the background state (the model prior). For each assimilation window we can formulate a cost function, J , that measures

normalised deviations from the observations as well as from the model prior. The cost function is a function of the increment10

adjustment to the initial conditions, boundary conditions and forcing and has two terms. The first term represents the difference

between the model and the observations, and is given by the squared difference between the observations and the model given

the integration of the increment adjustment through the tangent linear model, weighted by the inverse of the observation error

covariance. The second term penalises deviations from the background state, and is given by the squared difference between

the new estimate and the background state, weighted by the inverse of the background error covariance.15

The model prior is generated in the outer loop of the assimilation methodology. In order to improve the state estimate, the

model initial conditions, boundary conditions and forcing are adjusted such that the quadratic cost function is minimised. The

minimum is found by integrations of the tangent linear and adjoint models in the inner loops to determine the shape of the cost

function, and the minimum is found where the gradient of the cost function goes to zero. The inner loops can be continued

until J is reduced by a certain ratio, or, as in this study, a set number of inner loops can be completed that are found to give an20

acceptable reduction in J . We do not find the true minimum of J , but rather an acceptable reduction.

After the final inner loop the new increment is applied and the outer loop is completed by integrating the nonlinear model.

The final outer loop provides the ‘best estimate’ of the ocean state (the analysis). The analysis is constrained to satisfy the

nonlinear model equations (strong-constraint) and better represent the observations over the assimilation window, the length

of which is limited by the time over which the tangent linear assumption remains reasonable. The analysis then provides an25

improved estimate of the initial state for the subsequent simulation window.

In any assimilation scheme, the prescribed prior uncertainties have a significant control on the assimilation procedure. The

observation error covariance matrix specifies the uncertainty in the observations and the model’s ability to represent those

observations so as to prevent “over-fitting” the solution to noisy observations. Defining these observational uncertainties is an

important part of configuring any specific data assimilative model. Similarly, the background error covariance represents the30

uncertainty in our initial conditions, atmospheric forcing, and boundary conditions such that larger adjustments are permitted in

regions where the uncertainties are high, and vice versa. The goal is to solve for the nonlinear ocean solution that is dynamically

consistent with the observations and is free within the known uncertainties in the system. The resulting circulation has both a

reduced uncertainty and better represents the observations.
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Moore et al. (2011d) provide a detailed account of the IS4D-Var methodology and its mathematical formulation. The ROMS

4D-Var implementation is well described by (Moore et al., 2011d, b, c), and it has been used successfully in ROMS applications

(e.g., Di Lorenzo et al. (2007); Powell et al. (2008); Powell and Moore (2008); Broquet et al. (2009); Matthews et al. (2012);

Zavala-Garay et al. (2012); Janeković et al. (2013); Souza et al. (2014)).

3.3 Assimilation Configuration5

The minimisation of the cost function, J , is performed in a sequence of linear least-squares minimisations in the inner loops,

and the nonlinear model trajectory is updated in the outer loops. Because we are using 4D-Var, we aim for the longest time-

window available without nonlinearities growing too large. Linearity experiments (not shown) found that for this region, the

linear assumption remains acceptable for typical perturbations over 5 days, so we chose that as our window-size. Through

experimentation, we found that one outer-loop, each with 14 inner-loops, gives an acceptable reduction in J for a feasible10

computational cost.

The ROMS 4D-Var allows for controlling both the initial conditions and the time-varying atmospheric and boundary forcing.

We adjust the atmospheric forcing every 3 hours and the open boundary conditions every 12 hours. The winds are the dominant

adjustment in the atmospheric forcing.

In this study, we use 5-day assimilation windows, with a one-day overlap.We overlap the assimilation windows by one-day,15

such that the initial conditions for the subsequent assimilation window are 4 days after the start of each window. The overlap

allows us to produce a blended product by smoothing across the discontinuities between adjacent assimilation windows.

3.4 Observations and Observation Prior Uncertainties

The reanalysis time period was chosen because it contains the greatest number of available observations, including an EAC

transport array that was deployed from 1 Apr 2012 to 26 Aug 2013. Other available subsurface observations and satellite-20

derived surface observations are also sourced for this time period. Figure 5a shows the Argo profiling float observations,

coloured by time of occurrence, and Figure 5b shows all other observations, with the exception of the satellite-derived SSH,

SST and Sea Surface Salinity (SSS). The number of processed observations assimilated for each 5-day assimilation window is

shown in Figure 6a, with a break-down of the provenance of the temperature observations in Figure 6b. The observations and

their respective processing for assimilation into the reanalysis are detailed in the subsections below.25

The observations used for assimilation are limited by the spatial and temporal resolution of the model and the processes

resolved. If multiple observations from the same instrument exist in the same horizontal and vertical grid cell taken within

the same model time-step (5 minutes), the observations are averaged and this value is assimilated within that grid cell at

the appropriate time. Representational errors are assigned to each observation and provide the uncertainty in the observation.

This uncertainty is a combination of the uncertainty in the observation itself and just as significantly, the uncertainty in the30

model’s ability to represent that observation. Observations of processes unresolved by the model must be either filtered or an

uncertainty applied that accounts for the unresolved process. In the case of multiple observations in a single model grid cell,

the variance of those observations provides a lower-bound to the representational error as the model can express only a single

8
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value. Oftentimes, this error is greatest where the model resolution (and therefore its physics) cannot represent finer-scale

dynamics captured in the observations.

We describe the observations used below and detail the observation uncertainities for each. The consistency of these estimates

is checked with the posterior observation error in the results section.

3.4.1 Satellite-derived Sea Surface Height5

Archiving, Validation and Interpretation of Satellite Oceanographic Data (AVISO), France, produce global, daily, gridded (1/4◦

x 1/4◦) mean sea level anomaly (SLA) data produced by merging of all available satellites, computed with respect to a seven-

year mean. The AVISO data provides a daily statistical field giving a synoptic view of the SSH. The AVISO SLA data is added

to the dynamic SSH mean from the 10yr free run described above to generate sea level data for assimilation that is consistent

with the ROMS model bathymetry and configuration.10

We prescribe an observation uncertainty of 6cm. The error in the AVISO delayed-time global SLA product due to noise

for the region is estimated at 2cm (CNES, 2015). We include a further 4cm of uncertainty because, in this case, the model

resolves far more structure in the submesoscale than is capable in the observations. The AVISO fields provide a statistical fit

to alongtrack SSH data and the observation uncertainty allows for imbalances between this statistical field and a dynamically

balanced SSH field required by the model.15

We exclude SSH observations that were taken over water depths less than 1000m. This is because the observations are noisy

on the continental shelf and the AVISO gridded product is not able to resolve the submesoscale processes that occur here.

3.4.2 Satellite-derived Sea Surface Temperature

We use SST from the US Naval Oceanographic Office’s Global Area Coverage Advanced Very High Resolution Radiome-

ter level-2 product (NAVOCEANO’s GAC AVHRR L2P SST). The product does not provide observations through clouds20

but contains useful observations close to the coast. Data is available 2-3 times per day. A product error is specified in the

NAVOOCEANO SST product (Andreu-Burillo et al., 2010), with an error for each data point of 0.38-0.4◦ C. As the resolution

of the data is similar to the resolution of the model, the observation uncertainty for the assimilation is set to the square of this

product error.

3.4.3 Satellite-derived Sea Surface Salinity25

Sea Surface Salinity (SSS) has been observed from space for the first time by the National Aeronautics and Space Adminis-

trations’s (NASA) Aquarius satellite (www.aquarius.umaine.edu/). We make use of the Level 3 gridded salinity product which

provides daily fields at a 1 degree resolution. The observation uncertainty is set to 0.4. There is a product error of around 0.2 for

the Aquarius SSS data and 0.4 is chosen to account for additional uncertainty due to processes not resolved by the model. The

value is considerably higher than the uncertainties specified for other in-situ salinity observations, so as to prevent the surface30
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salinity observations from dominating the salinity cost function. Similarly to SSH, any data taken over water depths less than

1000m depth were eliminated.

3.4.4 Argo floats

Argo is an international program consisting of nearly 4,000 free-drifting profiling floats that measure the temperature and

salinity of the upper 2000m of the global ocean (www.argo.ucsd.edu). The Argo float locations in our model domain for 2011-5

2012, and the times at which they occur at those locations, are shown in Figure 5a. The Argo data points are averaged to the

model grid and 5-minute time-step.

Uncertainty profiles are defined to specify the nominal minimal uncertainties for subsurface temperature and salinity. To

devise the profile shapes, temperature and salinity variance is computed for each month of the year from the 10-yr free run.

The monthly variances are spatially averaged over the model domain and averaged in time to give a single variance profile for10

both temperature and salinity. The profiles are then scaled to provide variance profiles appropriate for the nominal minimum

observation error covariance. The uncertainty profiles are shown in Figure 7 (standard deviation is plotted instead of variance so

the units are more intuitive for the reader). The profiles provide greater uncertainties in the depth ranges of greatest variability

where representational errors are likely to be the largest. The representational error is specified as the maximum of this nominal

minimum uncertainty and the variance of the observations from the same model cell. The uncertainties for Argo range from15

0.12-1.2◦ C (0.06-0.16) for temperature (salt).

3.4.5 Expendable Bathythermographs

Expendable Bathythermographs (XBT) collect temperature profiles along repeat lines sampled by merchant ships. Two tran-

sects intersect our model domain; PX34 which is the Sydney-Wellington route, and PX30 which is the Brisbane-Fiji route

(only a small portion of this transect is within our model domain). Five PX30 lines took place over the assimilation period (1620

Dec 2011, 8-9 Mar 2012, 13 Sep 2012, 7 Jun 2013 and 1 Nov 2013) and seven PX34 lines (3-4 Feb 2012, 23-24 May 2012,

22-23 Sep 2012, 26-27 Nov 2012, 16-18 Feb 2013, 12-13 May 2013 and 24-26 Aug 2013). The sections are sampled at 10km

intervals. The XBT data points are averaged to the model grid and 5-minute time-step.

The same nominal minimal uncertainty profile used for the Argo temperature observations (Figure 7) is used.

3.4.6 High-Frequency Radar25

The Coffs Harbour High-Frequency (HF) ocean radar is part of the IMOS and is managed by the Australian Coastal Ocean

Radar Network (ACORN, http://imos.org.au/acorn.html). The radar is a WERA phased array system with 16-element receive

arrays located at Red Rock to the north of Coffs Harbour (RRK, 29.98◦ S , 153.23◦ E) and North Nambucca to the south (NNB,

30.62◦ S , 153.011◦ E). The radars operate at a frequency of 13.920 MHz, with a bandwidth of 100 KHz and a maximum range

of 100 Km.30
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The HF radar broadcasts and receives along defined angles in a phased-array setup and the surface current speed (towards

and away from the radar site) is measured. The overlapping coverage from the two radar sites allows the surface current (u

and v) vectors to be computed. Using the same assimilation procedure as detailed in Souza et al. (2014), we assimilate radial

currents, rather than the computed current velocities. The velocities have correlated errors and using the radials allows us to

make use of data when only one station is available and over areas that do not overlap with the other station’s measurements.5

We can also make use of radial data in regions where the beam intersection angle between measurements from the two stations

results in high error in the velocity calculation while the radials errors are adequately low.

Radial data is available from 1 Mar 2012 to the end of the reanalysis period. The areas of HF radar coverage are shown

in Figure 5b, with inset panels showing the percentage of data coverage for assimilated radials for the RRK and NNB sites

in Figure 5c and 5d, respectively. Radials for each of the two stations are processed separately. At the outer range of the HF10

radar instrument coverage, radial values become noisy. We extract only radial values with Bragg Signal to Noise ratio >10 dB.

Manual inspection of the radial values for each of the two sites was then conducted and a “good data” region was chosen for

each site every day, excluding the outer regions of coverage where noisy data is observed. Only radial data within these “good

data” regions is used, and absolute radial speed values greater than 2 ms−1 are excluded. This manual inspection was performed

daily as the radii of reliable radial data varies significantly, and this method allows us to retain the maximum amount of data15

for assimilation. The radial speeds and angles are spatially averaged onto the model grid and a 24-hour boxcar averaging filter

is used to remove tides and inertial oscillations that are not resolved by the model.

Radial speed standard error is given in the data files provided by ACORN, calculated from the mean width of the two

Bragg peaks weighted by their maximum power (Wyatt, 2014). These standard errors are converted to variances and averaged

as above. An error variance is then applied to each observation, given by the maximum of the averaged variances and the20

variance of the averaged radial speeds. The nominal minimum observation error for the surface radials is set to 0.15 ms−1. The

observation error covariance for each radial speed observation is set to the maximum of the nominal minimum observation

error convariance and the error variance computed during the averaging.

Any observations where the square-root of the radial speed error variance exceeds the radial speed magnitude are removed.

Radial data within one grid cell of the coast is also removed as unrealistically high values are observed here.25

3.4.7 NSW Shelf Moorings

Data collected from 3 moorings located along the NSW continental shelf is used in this assimilation study. The moorings

collect temperature and velocity data at high sampling frequencies and are located off of Coffs Harbour, 30◦ S (CH100) and

Sydney, 33.9◦ S (SYD100 and SYD140). In each case the number in the mooring name represents the approximate water depth

of the mooring location. Table 2 contains details of the mooring locations and the properties observed. Temperature sensors30

are spaced every 8 meters. The data collection and quality control is described in detail in Roughan and Morris (2011).

All temperature observations taken from moorings at high sampling frequencies are low-pass filtered to remove variability

at periods shorter than the inertial period (23.8 hours for Coffs Harbour and 21.5 hours for Sydney), and the observations are

applied 6-hourly. For latitudes south of 30◦ S, the inertial period is less than 24 hours so the filtering does not remove the diurnal
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signal which may arise from internal tides and/or diurnal surface heating for near surface temperature observations. The RMS

residual between the mooring temperature observations low-pass filtered at 30 hours (removing variability due to baroclinic

tides and inertial oscillations) and the observations filtered at the inertial frequency is very small compared to the nominal

minimum uncertainties applied, confirming that these unresolved processes are accounted for in the observation uncertainty

specification. Velocity observations are low-pass filtered at 30 hours to remove variability due to tides and inertial oscillations5

and applied 6-hourly. It is important to remove the tidal signal from velocity observations as the barotropic tidal velocities are

of similar order of magnitude to the sub-tidal velocities.

For all observations on the continental shelf, different nominal minimum observation uncertainity profiles are adopted (to

those used offshore for Argo and XBT) to account for increased variability due to finer scale processes that occur on the

shelf that are not resolved in the model. Variance profiles for the shelf observations were computed by comparing all of the10

shelf observations (NSW moorings, SEQ moorings and gliders) to the 2yr free run for the 2012-2013 assimilation period to

generate a nominal uncertainty profile on the shelf. Profiles were generated for all observed in situ variables; u and v velocity

components, temperature, and salinity. u (v) uncertainty peaks at 0.12 (0.3) ms−1 in the upper 50m reducing to 0.08 (0.1) ms−1

at 200m depth. The shelf temperature uncertainty profile peaks at 1.2◦ C between 20-100m depth, reducing to 0.8◦ C at 200m.

The computed salinity errors were doubled and are 0.1-0.16 for the upper 200m on the shelf.15

The observation error is specified as the maximum of this nominal minimum error and the variance from averaging ob-

servations within the same model grid cell. For velocities, the high density of the ADCP depth bins means several velocity

measurements are often available for a single vertical grid layer, which can result in variances that exceed the specified nomi-

nal minimum uncertainty.

3.4.8 EAC Transport Array and SEQ Shelf Moorings20

The EAC transport array was deployed as part of the IMOS to understand the variability of the EAC, and it is comprised of five

deep water moorings (EAC 1-5) which measure temperature, salinity and velocities. The array was positioned where the EAC

is predicted to be most coherent and was designed to measure the mean and time-varying EAC transport (Sloyan et al., 2016).

The array is continued onto the shelf slope and shelf with two moorings (SEQ400 and SEQ200) in approximate water depths

of 400m and 200m, respectively. Each mooring has a suite of instruments measuring temperature, salinity, and velocities at25

high sampling frequencies throughout the water column. Table 2 contains details of the moorings.

All temperature and salinity observations are low-pass filtered to remove variability at periods shorter than the inertial period

(26.0 hours), and the observations are applied 6-hourly. The vertical uncertainty profile used for the other off-shelf tempera-

ture and salinity observations (Figure 7) is used for the nominal minimum profile for the EAC array mooring observations.

For the SEQ moorings the nominal minimum vertical uncertainty profile generated for the shelf observations was used. The30

velocity observations are filtered and processed in the same manner as the NSW moorings, described above. For the EAC

array moorings, the nominal minimum error for u and v velocity components was specified as 0.12 ms−1 in the upper 10m of

the water column and 0.10 ms−1 for all depths below 10m. For the SEQ moorings, the uncertainty profile generated for the
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shelf observations was used. Similarly to the NSW moorings, the observation uncertainty is specified as the maximum of this

nominal minimum uncertainty and the variance from averaging observations within the same model grid cell.

3.4.9 Ocean Gliders

Autonomous ocean gliders (both SeaGliders and Slocum) were deployed as part of the IMOS by the Australian National

Facility for Ocean Gliders (http://imos.org.au/anfog.html). The buoyancy controlled gliders move horizontally through the5

water while collecting vertical profiles of temperature and salinity. The majority of the glider missions in the model domain

over the 2011–2012 time period occur on the NSW continental shelf, between 29.5◦ S and 32.3◦ S, with two missions between

25 March 2013 and 22 July 2013 extending offshore, further south and to depths of 900m (Figure 5b). Quality control flags

are applied to the glider data through the IMOS processing (Australian National Facility for Ocean Gliders, 2012) and only

the data deemed to be “top quality data in which no malfunctions have been identified and all real features have been verified10

during the quality control process” are used. The glider data points are averaged onto the model grid and 5-minute time-step.

Glider temperature data in the upper 20m and salinity data in the upper 50m were removed. The uncertainty profiles com-

puted for the shelf observations were used and the uncertainties for the gliders are the maximum between the variance computed

from the averaging and the shelf uncertainty profile.

3.5 Model Prior Uncertainties15

The goal of the assimilation is combine an uncertain model with uncertain observations to reduce the analysis uncertainty to

be lower than the model prior. As such, specification of the prior model and observation uncertainties is important. The model

uncertainty should represent the uncertainty in the state of the model for the given time. This was estimated from the average of

5-day variances from the 10yr free run described above. The variances provide an estimate of the uncertainty associated with

each state variable and surface forcing field. We choose 5-day variances as the model is nested in BRAN3 which assimilates20

large-scale data so we expect our model prior boundary and initial conditions to be accurate to within the typical changes to

the ocean state that occur over 5-days. Because we have only estimates of the variances, the background error covariance of

each field is estimated via a diffusion operator with specified length-scales that are assumed to be homogeneous and isotropic.

In the horizontal, the characteristic length scales chosen for the background covariance are 100km for SSH, temperature

and salinity and 70km for velocities. These values were chosen based on analysis of cross-correlation of SSH and complex25

correlation of surface velocities between points in the eddy rich Tasman Sea region from the 2yr free run. The length scale

of 100km for SSH is consistent with the decorrelation scales estimated from along-track satellite data for the area by Wilkin

et al. (2002) and used by Zavala-Garay et al. (2012). It is noted that shorter cross-shore length scales are likely along the

coast of south-eastern Australia, as the continental shelf is narrow (15-30km) and the EAC displays a narrow jet like structure,

while SSH decorrelation length scales were found to be about 100-200km in the alongshore direction by Oke and Sakov30

(2012). Bridging the scales between mesoscale eddy variability in the Tasman Sea and smaller-scale shelf processes, and the

anisotropic flow regime, is a challenge and the impact of the horizontal length scale specification requires further research.
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For the vertical, semivariogram analysis of glider data on the NSW shelf by Schaeffer et al. (2015) found vertical decor-

relation length scales of about 50m for both temperature and salinity on the NSW shelf. Analysis of correlations between

temperature data measured by the moorings used in this study found vertical decorrelation length scales of 15-30m for the

shelf moorings (NSW moorings, SEQ 200), 70m for SEQ 400 and 100-200m for the EAC deepwater array moorings (EAC

1-5). Salinity measurements were taken at SEQ200, SEQ400 and the EAC deep water array moorings and decorrelation length5

scales were similar to the length scales for temperature at these moorings. In the vertical, we apply characteristic length scales

of 50m for salinity and 10m for temperature. The shorter length scale for temperature was adopted due to the short length scale

of variability for temperature near the sea surface, as SST observations dominate. The salinity length scale is set to 50m (longer

than the temperature length scale) in order to limit vertical structure in the salinity analysis increments.

Analysis of correlations between velocities measured by the moorings found vertical decorrelation length scales of 20-50m10

for the shelf moorings (NSW moorings, SEQ 200), 70m for SEQ 400 and 100-200m for the the EAC deep water array moorings

(EAC 1-5). Because the deep water moorings span the core of the EAC, we reduced the decorrelation length scale value to 50m

in the vertical for velocity to be ensure consistency when assimilating velocities outside of the EAC and/or on the shelf.

The covariances (between differing model variables) are computed by the tangent linear and adjoint models in the inner

loops. The uncertainty in the observations are detailed below.15

4 Reanalysis Evaluation

In this section, we evaluate the performance of the assimilation procedure in terms of the consistency between the posterior and

prior uncertainties, comparison with the observations, and comparison to unassimilated observations. Overall, the assimilation

performs well in minimising the cost function over each assimilation interval and the corresponding reanalysis provides a good

match to observations.20

4.1 Consistency of Observation and Model Uncertainties

The level of agreement between the prior observation and model uncertainty specified and the posterior uncertainty from

the assimilation provides a measure of the consistency of the assimilation system given the prior uncertainty assumptions

(Desroziers et al., 2005). The posterior errors are calculated for the reanalysis using equations (5) and (6) in Moore et al.

(2011a). The calculations are in observation space and the prior and posterior uncertainties match well.25

For SSH, the spatially-averaged posterior observation uncertainty ranges from 4.1-8.6cm with a mean value of 5.7cm, which

matches the prior observation uncertainty of 6cm very well. The SSH prior and posterior model uncertainties are also consistent.

For subsurface temperature, the prior and posterior model uncertainties match very well. The prior observation uncertainties are

greater than the posterior observation uncertainties for subsurface temperature; the time-mean of the spatially-averaged prior

uncertainties is 0.88◦ C compared to 0.50◦ C for the posterior uncertainties. This prior uncertainty was necessary to account30

for the errors of representativeness associated with the subsurface temperature observations. Similarly for subsurface salinity

and velocities, the prior observation uncertainties exceed the posterior observation uncertainties. For the radial velocities, the
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time-mean of the spatially-averaged posterior observation uncertainties is 0.12ms−1, which matches the prior observation

uncertainty of 0.15ms−1 well.

Overall, we are confident that the prior uncertainties are well specified and, as such, the assimilation is configured to provide

a near-optimum minimisation of the cost function for each assimilation interval.

4.2 Reanalysis Comparison to Observations5

4.2.1 SSH

The Root Mean Squared (RMS) observation anomaly for a particular observation location describes the variability in the

observation with respect to its time-mean. This is compared to the RMS differences between the observations and the free-

running model (the 2yr free run), and the observations and the analysis, to provide an assessment of how well the free run and

the analysis match the observations relative to their typical variability. A skillful state estimate will have residuals with the10

observations that are much lower that the observation’s typical variability.

The observation anomaly for an observed variable v at a particular location is given by RMSObsAnom =
√

Σtn
t1

(v(t)−v̄)2

n ,

where t = t1− tn are the observation times and v̄ is the time-mean of the observed variable at that location. The RMS dif-

ference between the free run values (in observation space) and the observations and the analysis and observations are given

by RMSDFreerun−Obs =
√

Σtn
t1

(vf (t)−vo(t))2

n and RMSDAnalysis−Obs =
√

Σtn
t1

(va(t)−vo(t))2

n , respectively, where vo is the15

observed value, vf is the corresponding value from the free run and va is the corresponding value from the analysis.

Figure 8a shows the RMS SSH anomaly from the observations over the 2-year assimilation period. The RMSDAnalysis−Obs

is shown in Figure 8b and shows that the SSH fields are well represented in the analyses. In Figure 8c, the domain-averaged

RMSObsAnom, RMSDFreerun−Obs and RMSDAnalysis−Obs are plotted for each 5-day assimilation window over the 2-year

period, showing significant improvement in the fit to observations in the analyses. The RMSDFreerun−Obs is of similar magni-20

tude to the SSH observation anomaly indicating that, as expected, the free run has no skill in predicting the chaotic mesoscale

eddies. The time-mean of the spatially-averaged RMSDAnalysis−Obs over all assimilation windows is 7.4cm. This is close to

the observation uncertainty for SSH of 6cm and small compared to the typical SSH variability (the time-mean of the spatially-

averaged SSH observation anomalies is 23.4cm)

4.2.2 SST25

The free-running model shows some skill in prediction of the SST due to the accuracy of the surface forcing; however, signif-

icant improvement is achieved in the analyses. The RMS SST observation anomalies describe the variability in SST over the

2-year assimilation period, including the seasonal cycle, and are shown in Figure 9a. The RMSDFreerun−Obs is smaller than

the observation anomalies and the RMSDAnalysis−Obs (Figure 9b) is further reduced. The time-series of spatially-averaged

RMSObsAnom, RMSDFreerun−Obs and RMSDAnalysis−Obs are shown in Figure 9c over the 2-year period. The time-mean of30

the spatially-averaged analysis error for all assimilation windows is 0.4◦ C, which is the same magnitude as the SST observa-
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tion uncertainty. The high variability seen in the time-series plots, particularly in the observation anomaly, is due to the patchy

spatial coverage of the SST observations.

4.2.3 Subsurface temperature from Argo, Gliders and XBT

Subsurface observations are spatially and/or temporally sparse in comparison to satellite observations of the sea surface. The

covariances between surface and subsurface variables are computed with the adjoint and tangent-linear model such that the5

model physics are used to generate the time-varying covariance. While these covariances allow the surface observations to

impact state estimates of the subsurface properties, subsurface observations are invaluable in improving estimates of the sub-

surface (e.g., Zavala-Garay et al. (2012)).

We show the improvement in subsurface temperature as measured by the Argo floats, XBTs and ocean gliders by computing

the RMSDFreerun−Obs and RMSDAnalysis−Obs in nominal depth bins for all observations over the model domain (Figure10

10). For Argo, time-mean RMSDFreerun−Obs for all observations in the upper 500m of the water column is 1.6◦ C, reduced to

0.8◦ C in the analysis. For the XBT above 500m, the time-mean RMSD is reduced to 1.2◦ C in the analysis from 2.0◦ C for the

free-running model. Below 500m, the number of observations in each depth bin for Argo and XBT is too low for a meaningful

comparison. The greatest improvement in the fit to observations is achieved in the glider data which mostly samples the shelf

and shelf slope circulation. A great majority of the glider observations are in the upper 100m of the water column; here the15

time-mean RMSDFreerun−Obs of 1.9◦ C is reduced to 0.9◦ C in the analysis.

As the Argo profiling floats measure both temperature and salinity at each observation time we are able to assess the residual

reduction in terms of potential density throughout the water column (Figure 11), describing the improvement in the represen-

tation of the density structure in the analysis. The free-running model has some skill in predicting potential density as sampled

by the Argo floats in the upper 500m, as the RMSDFreerun−Obs is less than the RMSObsAnom for the nominal depth bins.20

The RMSDAnalysis−Obs in potential density is reduced to about half of the RMSDFreerun−Obs in the upper 500m; the upper

layer that is most effected by mesoscale eddies. The RMSDAnalysis−Obs in potential density peaks in the upper 100m at 0.24

kgm−3 and decreases gradually to below 0.1 kgm−3 at 500m depth, remaining below that for the Argo-observed ocean deeper

than 500m.

4.2.4 Mooring observations25

Profiles of the complex correlation between the velocities from the free-running model and the analyses at the mooring velocity

measurement locations are shown in Figure 12. The correlations are generally considerably improved in the analyses. The

complex correlations for the analysis velocities approach the value of one for the South East Queensland shelf moorings

(SEQ200 and SEQ400), which are on the shelf and shelf slope at the latitude where the EAC is found to be most coherent. At

this same latitude, the deep water array moorings 1 to 4 (EAC1-4) have high complex correlations between the analysis and30

the observations in the upper 400m of the water column. This is where the mean EAC jet is the strongest (refer to Figure 3).

The EAC5 mooring is outside of the main jet and influenced by a more variable eddy-dominated circulation and the analysis

has slightly lower correlations in the upper water column at this location.
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Further south on the shelf, velocity estimates are improved with depth-averaged free run and analysis complex correlations

of 0.69 and 0.91, respectively, for the Coffs Harbour mooring (CH100), 0.50 and 0.83 for the Sydney mooring (SYD100) and

0.48 and 0.87 for the other Sydney mooring (SYD140).

4.2.5 Radials

The observed surface velocities are computed from the assimilated radials and the corresponding values computed from the5

radial values extracted from the free-running model and the analyses. The complex correlations between these observed surface

velocities and the surface velocities computed from the free-running model and the analysis are shown in Figure 13. Note that

the complex correlation for a particular grid cell requires velocities to be computed, which requires radial data from each of

the two sites to be available in that cell and that the beams overlap with an angle greater than 30◦ (velocity calculations where

beam intersection angles are smaller than this are deemed inaccurate). Radial data is assimilated at other times but cannot be10

converted to velocities. Only grid cells where velocity values can be computed at more that 10 times over the 2-year period

are included in the plots. Surface velocities are compared here (rather than the scalar radial velocity values) as they are more

meaningful in terms of the ocean surface currents. In the free run, velocity estimates were best on the shelf and shelf slope with

complex correlations reducing offshore of the shelf slope. Velocity is very well represented in the analysis under the HF radar

footprint, with complex correlations from 0.8-1 across the entire footprint.15

4.3 Comparison to independent observations

Because 4D-Var uses the model dynamics to determine covariance, information from observed variables can propagate to

unobserved regions such that the ocean state better fits and is in balance with the observations. Comparison of the reanalysis

with independent, non-assimilated, observations allows us to assess the performance of the state estimate away from assimilated

observations. As the principal aim of this work was to assimilate the maximum number of available observations in the region20

in order to provide a ‘best estimate’ of the ocean state over the 2-year period, few independent observations remain available

for this comparison.

The available independent observations are from shipboard CTD casts that were taken on three separate cruises within the

model domain over the 2-year period. 15 CTD casts were taken as part of the deployment of the EAC array, along the EAC

array transect from 21-27th April 2012. 5 casts were taken off of Sydney between 34.3-36.4◦ S and 151.6-152.8◦ E from25

27-28 Feb 2013. 28 CTD casts were taken in two transects off of Brisbane at 26.3◦ S and 27.1◦ S out to 155.8◦ E between

21-31 Aug 2013. The CTD cast observations are mapped to the model vertical levels for consistent comparison given the

vertical discretisation of the model, and the corresponding model values extracted from the 2yr free run and the analysis. The

RMSObsAnom, RMSDFreerun−Obs and RMSDAnalysis−Obs for potential density in nominal depth bins for all CTD casts are

shown in Figure 14a. In the upper 350m of the water column, the RMSDAnalysis−Obs in the potential density is reduced to30

about half of RMSDFreerun−Obs. For all CTD casts in the upper 200m, where the number of observations is the greatest (not

shown), the depth-averaged RMSDFreerun−Obs of 0.35 kgm−3 is reduced to 0.18 kgm−3 in the analysis. This shows a marked

improvement in the representation of the subsurface ocean, as observed by these CTD casts, is achieved in the reanalysis.
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Note that the profiles of Argo RMSDFreerun−Obs and RMSDAnalysis−Obs in potential density (Figure 11) are similar to

the RMSD profiles for the independent shipboard CTD observations. The reanalysis showing similar residual reduction for

the assimilated Argo observations and for the non-assimilated CTD cast observations suggests a well-specified assimilation

system in which a dynamically-balanced ocean state estimate is achieved with improved state-estimation throughout the model

domain, rather than over-fitting to assimilated observations.5

5 Summary and Conclusions

We have presented the development of a data assimilating model of the EAC region and assessed the performance of the

corresponding reanalysis over a 2-year period. We use an advanced variational data assimilation scheme to integrate a state-of-

the-art coastal ocean model with an unprecedented observational data for the southeast Australian region. We show that the free-

running numerical model reproduces the long-term mean surface and subsurface ocean properties and represents the eddying10

circulation as expressed by the sea surface variability well. For the reanalysis, we show that the SSH and SST have mean RMS

residuals with the observations of 7cm and 0.4◦ C. The RMS residual profile for temperature has a subsurface maximum of 1◦

C for Argo float observations, 1.4◦ C for ocean glider observations and 1.7◦ C for XBT observations. Surface and subsurface

velocity observations from HF radar, shelf and offshore moorings match well with complex correlations between 0.8-1 in the

upper 500m. The reanalysis has an RMS residual in potential density with independent (non-assimilated) shipboard CTD cast15

observations of under 0.2 kgm−3 throughout the water column.

The performance of the reanalysis is dependent on prior assumptions of the observation and model error covariances and

we show that the prior and posterior observation and model uncertainties are consistent. This indicates that the assimilation

configuration allows a near-optimum minimisation of the difference between the observations and the model, given observation

and model uncertainty. This is achieved through processing of the observations to eliminate fine-scale processes not resolved20

by the model, and through careful specification of the prior observation and model background uncertainties.

Not only does the reanalysis provide a good match with observations, it is the first reanalysis of the EAC region that resolves

the continental shelf at its narrowest point (15km) by more than a single grid cell (BRAN3 has a resolution of 10km, Oke et al.

(2013)) and the first high-resolution reanalysis of the region that uses the model physics to adjust the model in a dynamically

consistent way (Zavala-Garay et al. (2012) has a resolution of 18-30km). Furthermore, it is the first attempt to assimilate such a25

variety of observations in the region, including observations from moorings on and off the continental shelf, a coastal HF radar

array and ocean gliders. The high-resolution and dynamic-consistency of the reanalysis mean it has the potential to provide a

marked improvement in our ability to capture important circulation dynamics in the EAC.

The reanalysis is being used to study the 3-dimensional structure of the current and the processes that drive its separation

from the coast and eddy formation. Several modelling studies of coastal regions in south-eastern Australia are making use of30

the reanalysis for boundary forcing. Output from the adjoint model integrations performed in each assimilation interval is being

used to directly assess the impact of specific observations on the estimates of circulation dynamics of interest. Through this

we hope to understand which observations are most effective at improving our state-estimates and which locations are most
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effective to observe, providing valuable information on how we might improve the observing system to ultimately improve

prediction.

6 Data availability

Model initial conditions and boundary forcing comes from the Bluelink ReANalysis version 3p5 (BRAN3, Oke et al. (2013)).

Surface forcing is provided by the Australia Bureau of Meteorology’s Australian Community Climate and Earth-System Simu-5

lation (ACCESS) 12km product (Puri et al., 2013). The observations used for assimilation are available through the Australian

Integrated Marine Observing System’s (IMOS) data portal (www.imos.org.au).

The reanalysis output is saved as snapshots of 3-dimensional fields of ocean properties (sea-level, temperature, salinity,

velocities) every 4 hours over the 2-year period (2012-2013). The data is archived at the University of New South Wales,

Australia, and can be made available for research purposes (contact the corresponding author of this paper).10
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Figure 2. Root mean squared (RMS) SSH anomaly over 10 year period from AVISO (left panel) and ROMS 10yr free run (right panel).

Table 1. Total full-water-column alongshore transport (Sv) through 27.5◦ S (EAC deep water array), 30.3◦ S (Coffs Harbour) and 33.9◦

(Sydney) cross-shore sections as shown in Figure 3, computed daily for the 10-year free-running model period.

Transport (Sv)

EAC Array (27.5◦ S) mean -14.3

std 28.4

min -97.9

max 59.5

Coffs Harbour (30.3◦ S) mean -21.9

std 31.7

min -120.2

max 66.5

Sydney (33.9◦ S) mean -6.9

std 39.2

min -163.0

max 117.8
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Figure 3. Mean SSH from AVISO showing cross-shore sections that cross the coast at the EAC Transport array (27.5◦ S), Coffs (30.3◦ S)

and Sydney (33.9◦ S), top panel. Mean alongshore velocity from the ROMS 10yr free run at the respective cross-shore sections, top row,

mean temperature from the ROMS 10yr free run, middle row, and mean temperature from CARS climatology, bottom row.
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Figure 4. Temperature-Salinity diagram for the Argo observations and corresponding values from the 2yr free run for 2012-2013.

Table 2. Mooring information for the EAC deep water array moorings (EAC1-5), South East Queensland shelf moorings (SEQ200, SEQ400)

and the NSW shelf moorings (CH100, SYD100, SYD140).

Sensor Depth Range (m)

Name
Lat
(◦ S)

Lon
(◦ E)

Water
depth
(m)

Distance
offshore

(km)
Temporal
coverage Temperature Salinity Velocity

CH100 30.27 153.40 98 25
1 Jan 2012 -
30 Dec 2013 5-100 - 9-89

SYD100 33.94 151.38 104 10
1 Jan 2012 -
30 Dec 2013 11-107 - 1-99

SYD140 33.99 151.45 138 19
1 Jan 2012 -
30 Dec 2013 21-143 - 24-129

EAC1 27.31 153.97 1525 53
21 Apr 2012 -
23 Aug 2013 60-1060 60-1060 43-1054

EAC2 27.31 153.99 1940 55
22 Apr 2012 -
24 Aug 2013 163-1045 163-1045 9-1495

EAC3 27.25 154.29 4220 85
23 Apr 2012 -
24 Aug 2013 156-3991 156-3991 9-3968

EAC4 27.21 154.65 4745 121
25 Apr 2012 -
25 Aug 2013 154-4009 154-4009 38-3974

EAC5 27.10 155.30 4797 185
26 Apr 2012 -
26 Aug 2013 192-1109 192-1109 107-4016

SEQ400 27.33 153.88 405 44
01 Apr 2012 -
06 Jun 2013 48-375 48-375 23-405

SEQ200 27.34 153.77 209 33
01 Apr 2012 -
06 Jun 2013 40-189 40-189 23-196
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Figure 5. Argo observations coloured by time of occurrence, (a), and all other observations, with the exception of satellite-derived SSH and

SST, (b). 100m, 200m and 2000m contours are shown. Coastal towns are labelled in line with their location on the coast. HF radar sites Red

Rock (RRK) and North Nambucca (NNB) are shown with black asterisks in (b) and zooms showing the percent coverage of radial data for

the two stations are shown in (c) and (d).
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Figure 6. Number of observations (after processing) used in each 5-day assimilation window; for each observation type, (a), and temperature

observations for each data source, (b).
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continental shelf.
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Figure 9. RMS SST observation anomaly, including seasonal cycle, (a) and RMS SST difference between the analysis and observations (b)

for the 2-year assimilation window. Time-series of spatially-averaged RMS SST observation anomaly, RMS SSH difference between the free

run and observations, and RMS SSH difference between the analysis and observations, for each assimilation window (c).
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Figure 11. RMS potential density observation anomaly and RMS difference between the free run and observations, and the analysis and

observations for Argo float observations. Observations are grouped into nominal depth bins of 25m from the surface to 200m and 50m below

200m.
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Figure 12. Complex correlation between observed velocities and free run and analysis velocities at mooring locations.
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Figure 13. Complex correlation of surface velocities computed from the assimilated HF radar radials, and surface velocities computed from

the corresponding free run (left) and analysis (right) radials. 200m, 1000m and 2000m bathymetry contours are shown.
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Figure 14. RMS potential density observation anomaly and RMS difference between the free run and observations, and the analysis and

observations for independent CTD cast observations mapped to model vertical levels. Observations are grouped into nominal depth bins of

20m from the surface to 500m depth and 50m below 500m.
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